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Abstract 

For the determination of reaction paths and critical points on the potential energy 
hypersurface of chemical reactions, a rigorous mathematical background for the theory 
of a global searching procedure based on the catchment regions of the gradient field 
is given. 

1. In t roduct ion  

In order to obtain a faithful approximative picture of the course of a chemical 
reaction, instead of struggling with a Schr6dinger many-body problem it is sufficient 
to determine the curve of the so-called intrinsic reaction coordinate (IRC) [1]. The 
IRC is a reaction path (RP) which connects two minima and is tangent to the 
gradient field of the energy function of the manifold of  all mass weighted space 
configurations. For simple reactions, the IRC is composed of  two steepest descent 
paths leading from a saddle point of  index one (transition structure/state) to two 
minima belonging to stable configurations of  reactants and products. There exist 
several algorithms (see, for example, refs. [2-19])  for calculating RPs in various 
special cases; however, their global convergence properties have not yet been 
investigated thoroughly. The most popular procedures try to find meta-IRCs [20-22] 
starting from the col and leading towards valleys or, inversely, they try to hit the 
col by meta-IRCs from the minima. Such algorithms are very likely unstable, and 
parallelizable only with low efficiency. We propose here another approach to the 
problem. Our basic idea lies in the concept of the exponential of analytical vector 
fields. Having a curve c and a potential function f on IR n, a sufficient condition is 
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that exp(t g r ad f ) c  converges uniformly to an IRC if t ~ oo. Our main theorem 
contains interesting information on the attractor behaviour [23, 24] of IRCs and the 
convergence properties of the exponentials of gradient fields and opens many 
possibilities of generalization. 

In our first paper [25], based on Mezey's theory [26-30] on catchment 
regions, the general theory of a procedure for searching IRCs was described and 
illustrated by some artificial model functions. Our main idea has been the utilization 
of the observation that starting from an almost arbitrary path connecting two minima, 
the (nonlinear) shifts of this curve along the negative gradient of the potential 
function constitute a path homotopy which converges uniformly to some IRC under 
not too restrictive conditions. It is an interesting problem to elucidate the relationship 
of our method to variational principles concerning the concept of  IRC [31,32]. In 
the second paper of  this series [33], the algorithm of the numerical realization of  
the procedure and a detailed demonstration, on the model function of ref. [25], of  
the most important features of the algorithm were presented. In the third paper [34], 
the flow-charts and FORTRAN codes of a highly parallelizable simple computer program 
showing the main characteristics of the procedure were published. 

The aim of the present paper is to give a firm and rigorous mathematical basis 
to the general theory of  a well-parallelizable curve variational method [25] for 
searching RPs and locating saddle points (SP) or other stationary points on potential 
energy hypersurfaces (PHS) of chemical reactions. This paper contains indispensible 
information for those who are interested in the numerical application of  the idealized 
algorithm for larger chemical systems on the convergence properties of the method. 
We present here a mathematical discussion of the gradient field of the potential 
function, representing the simplest situation of chemical interest. Using the mathematical 
formulation described in this paper and the techniques presented in refs. [25, 33,34], 
the method and procedure will be illustrated using chemical examples in a future 
paper [35]. 

2. Main results 

Throughout this section, let f :  Rn __~ IR be an analytic function such that 

(a) the set S := {x : Df (x )  = 0} of  singularities is finite; 

(b) every singularity of f is of Siegel type (i.e. i fy  ~ S, then det D2f(y) ~ 0 and 
the vector field -Df(x)~/Ox is analytically linearizable in some neighbourhood 
of the point y); 

(C) f(x), IIDf(x) ll ~ oo for Ilxll ~ oo. 

Let Sk (k = 0, 1 . . . . .  n) denote the set of those singularities x ~ S of f where 
the second derivative D2f(x) admits k negative (and hence n - k  positive) 
eigenvalues. Note that So is the set of local minima of f and necessarily So = 0. 

For fixed z ~ IR n, we shall denote by W(z, .) the maximal solution of the 
initial value problem 
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Since 

d 
d--~ y ( t )=  - D f ( W ( z , t ) )  y(O) = z. (1) 

d 
f ( W ( z , t )  = -IlDf(y(t)) l l  2 < 0 (2) 

d-7 

for any t ~ dom W(z, .) and the set {x :f(x) <f(x)} is compact, the function t ~ W(z,t)  
is strictly decreasing or constant and it is well-defined for every t >_ 0. 

Given a singular point y ~ S, according to assumption (b), by writing 

V - -  • • • < -  (3) 

for the eigenvalues of D2f(y),  we can fix ey > 0 and a neighbourhood Uy of  the 
point y with an analytic diffeomorphism onto some neighbourhood of  the closure 
of  Uy in such a way that 

T y ( U y )  = {x:llxll < ey} (4) 

and for any z e Uy 

Ty(W(z,t)) = Aty (7~y (z)) 

where 

(W(z , [0 , t ] )  C Uy),  (5) 

Aty • v I---) (exp(-~.Yt) vk" k = 1 . . . . .  n).  (6) 

We assume, without loss of  generality, that the domains Uy are pairwise 
disjoint and that they are so small that the steepest descent paths of  f starting from 

do not return to U.  (This is possible because f decreases strictly along its 
steepest descent paths outside S.) 

Finally, for y ~ S we shall denote by Ay the catchment  region of  the singular 
point  y. Thus,  

Ay := {z e lRn'W(z,t)---) y (t---)~)} ( y e S ) .  (7) 

2.1. PROPOSITION 

We have IRn= wy~ say and, for any y E Sk, the region Ay is an ( n - k ) -  
dimensional  analytic submanifold of  IR n. Moreover,  each coordinat ion Ty admits a 
bianalytic extension Ty to the domain Uy consist ing of  all maximal  steepest descent  
paths of  f touching Uy and 

Ay = Ty I {x ~ Uy " x 1 = . . . = x k = 0} (y e Sk). (8) 
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Proof 
Consider any z e IR n and define (p(t) := f(U?(z, t)) (t > 0). Regarding (2), the 

function q~ is decreasing and analytic. Since the level set {x :f(x) < f (y )}  is compact 
by assumption (b), the functions q~, q0', q~" are bounded. Since q~(t) ,1, inf q0 (t ---) ,,~), 
the boundedness of ~p" implies that necessarily q/---)0 (t---) oo). Hence, by (2), 
IIDf(Ue(z, t))ll---) 0 (t---) o% Since v : u ~ IIDf(u)ll is a continuous function and 
S = {x : v ( x ) =  0} is a discrete set, it follows that ~t'(z, t)---)y (t---)~,) for some 
y ~ S. By the arbitrariness of z, this proves that lRn= uy ~ sAy. 

Assume y ~ Sk. Define 

Wy,x:= {z : W(z,t) e Uy} ('c e IR) . (9) 

By the analyticity of ~t', the figures Wy,z are open and connected. The mapping 

Ty,x(Z) := Ay ~ 7~y(~F(z,'l:)) (z e Wy,x) (10) 

satisfies (5) with Ty,~ and Wy,~ in place of :F and U, respectively. We show that Ty,, 
and Ty,o coincide on Wy,~n Wy, o. Let "c < O. Since, by assumption, steepest descent 
paths of  f issued from Uy do not return in Uy, we must have 

W(z, t) ~ ~]y ('c < t < O, z ~ Wy,x n Wy.~ ). (11) 

Thus, if Wy,x n Wr, o, then by (8) and (5) we have A~-Xi?yW (z, "c) = Tyq~(z, "c + ( 0  - "c)). 
Hence, 

Ty,ag(z ) = Ay°7~y (tlJ(z, 0 ) )  

= A-y°A~y-xfy(W(z,'c))= Ty,,(z) (z e Wy,xnWy,o). (12) 

Therefore, Ty := u~e  RTy,x is well-defined. 
We complete the proof by observing that A y c  Uy and 

Ty(Ay)={ l )~  xeRU Wy,x:limNyv=O}c{v'tht~,~ . . . . .  vk = 0}. (13) 

Our fundamental result is the following theorem (to be proved in section 3 
in a sharper form): 

2.2. THEOREM 

Let f :  IRn--, IR be an analytic function satisfying (a), (b), (c). Then the 
catchment regions of the points of S cover the whole IR". Assume {c(p) : p ~ [0, 1]} 
is a piecewise analytic curve joining two local minima of f which changes catchment 
regions finitely many times. Then, by writing ~-t for the curve exp(-tDf(x)O/Ox)c 
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with parameter iza t ion  proport ional  to the arc length on [0, 1], the curves 
{Ft (s) • s e [0, 1]} converge uniformly to some IRC joining c(0) and c(1) for t ---> oo. 

2.3. REMARK 

A careful examination of the boundaries of  catchment regions (see proposition 
2.1) shows that the hypothesis of  the theorem is very probably satisfied for an 
arbitrary admissible initial curve. For example, if  we restrict our attention to polygons 
with a fixed number of vertices joining the two minima, then such a polygon 
changes catchment regions finitely many times with respect to a homogeneous 
distribution with probability 1. 

Concerning the local linearizability of vector fields around stationary points, 
we refer to the famous Har tman-Grobman theorem [36, 37] and its analytic extension 
by Siegel [38]. 

3. The proof  and a generalization of  the fundamenta l  theorem 

3.1. DEFINITION 

To prove theorem 2.2, we need the following concept. We call a function 
~0 : [0, p) ~ IR root-analytic if cp -= 0 or if  cp is analytic on (0, p) and we can write 

cp(u) = ~., ao~u e° (0 < u <_ r), ~.,[acol r°~ < oo (14) 

for some r > 0 and a strictly increasing sequence 0 < ~ 1" ,~ with suitable non-zero 
reals a,o (co ~ f~). 

It is not difficult to see that root-analytic functions are continuous also at 0. 
Hence, 

min f~ = m a x { g  > 0 • luim0ltp(u)lu-g < oo } (15) 

holds in (14). The uniqueness of  decomposition (14) follows immediately. We call 
the value min t2 the order of  cp. 

Given a root-analytic function tp with decomposition (14), it follows from the 
discreteness of  f~ that 

cp'(u) = ~ o3aeou c°-I (0 < u < r),  (16) 

where the series is absolutely convergent. Thus, if ~t is the order of  the function 
q~-q)(O), then ul-~d(p(u) /du is also root-analytic. 

Note that if  F is an anlytic function of  n variables and ~1 . . . . .  q~,, are root- 
analytic, then F(qh . . . . .  q)n) is root-analytic when defined in some right neighbourhood 
of O. 



410 L.L. Stach6, M.I. Bdn, Global searching of reaction paths 

3.2. NOTATIONS FOR 3.3-3.8 

Let fi ~ [-o% 0) and ~,1 . . . . .  ~.n ¢ 0 be real and v"  [0, P] "--) IRn a root-analytic 
curve (i.e. v extends root-analytically to some right neighbourhood of  [0, p]). 

For any t ~ IR, we introduce the transformation 

A t. (xl . . . . .  Xn) ~ (e-~ktxk" k = 1 . . . . .  n). (17) 

Concerning the component  functions of  the curve v, we assume 

v~(0) = 0 whenever  ~k < 0. (18) 

We write I.t k for the order of  vk and decompose 

v~(u) = U~tkWk(U) (k = 1 . . . . .  n) (19) 

using suitable root-analytic functions wk of  order 0 (in the trivial case v k -  0, we 
set formally kt~ = o% w~ - 1). Define 

l)t" u b-~ At-(llfi)l°gul)(u), Vt(p) := l)t(peSt). (20) 

Next, we define the value 8 < 0 by 

1 1 ~tk 
. . . .  max (21) 

(if ~.k > 0 for all k or vk = 0 whenever ~.k < 0, then set ~ : = 8). Finally, we introduce 
the conjugate functions and orders 

~ t ( p )  := v t (pe~t ) ,  ~ k ' =  - k k / ~ + l x k  + ~ ' k / 8 .  (22) 

Immediate calculations yield 

V~ (p) = e~tkS~p~t*+Xk/~Wk (pe & ), ~t  (p) = e'~k~tp~,+~k/~Wk (peSt).  (23) 

Hence: 

3.3. LEMMA 

We have  v ( u ) =  VC1/~)l°g~(1) and I.tk > 0 i f  ~.k < 0. The  c o m p o n e n t s  

u ~ ~0/g~l°g"(u)(1) are root-analytic functions of  order ~k > 0 for every index k. 

We have ~k = 0 if and only if ~,~ < 0 and ktk/~,k = ~-1 _ ~5-1. 

Next, we establish the pointwise convergence of  V t, ~-t for t---) ~,. 
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3.4. LEMMA 

The curves V := l imt_~_V t, V-:= limt__,~. ~-t are wel l -def ined on (0, ,,,,) and 
they are At-invariant for every  t ~ IR. For  any fixed p > 0, we have limt ~ =AtV(p )  
= limt _~ ** A -t V (p )  = 0. 

Proof 

We know IXkS,gk5 < 0 for any k. Hence ,  by (23) 

V~(p) ---) l(o}(t.tk)pZ'k/6wk(O), ~t(p)__) l{o}(-~k)p~.k/Swk(O) (24)  

as t ---) ~,.* Thus,  Vk(p) ~ 0 implies g~ = 0 and hence  ~. < 0 because  if ~. > 0, then 
Vk(0) = 0 and so Ixk > 0. Therefore,  AtV(p)  --) 0 (t --) ~,,). Similarly, ~k(P)  ;e 0 implies 
gk = 0, which  means  )~ > 0 by l emma 3.3. Hence ,  A -t V'(p)  --) 0 (t ~ ~,). Final ly 
obse rve  that, disregarding the trivial case 5 = _o,, (where  V - 0 ) ,  for any k, 

[ N  u ( p ) ] k  = 1{o} (I-tk)e-XktPXk/~Wk (0) = Vk (pe -St ). (25)  

The  argument  can be repeated with V in place o f  V. Thus,  

NV(p) = V(pe-~ ' ) ,  A t V(p)  = V ( p e  -5 ')  (t e IR).  (26) 

For  purposes  o f  proving theorem 2.2, we invest igate  the convergence  o f  the 
der ivat ives  o f  V t and ~-t, respect ively.  To  do this, it is convenien t  to introduce,  for 
any N = 0, 1 . . . . .  the decomposi t ions  

dN . . 

du N = wk.N(u ). 
(27) 

Since any wk is a root-analyt ic  function o f  order  0, it fo l lows  that the funct ions Wk,N 
are also root-analyt ic .  Note  that the order  of  wk,N is > 0 if  IXk = 0. F rom (23) we  
obtain 

d N 
= Wk,N(Pe ), dP u V/~(p) e(~tk+U)&pgk+~.k I~--N & 

d N 
Wk,N(Pe ). ~kt(p) = e(gk+N)gtp~tk+X ~/~-/V , gt. 

dp u 

(28) 

*For a set S, 1 s denotes the Kronecker function ls(x) := [1, (x ~ S), 0 (x ~ S)]. 
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3.5. LEMMA 

For any v ~ (0, ~ - 5 )  and N, k there exists co > 0 with 

d H d H 
e °~ sup pH I V/c(p ) -  Vk(p)l--)O (t--)oo). 

Proof 

(29) 

Since ~t k > 0 and 5 < 0, for fixed p, 

d H 
dP N V~ (p) ---> 1{0} (~tk)p~tk+~k/8-Nwk,N (0) (t ~ co). (30) 

Case 1. gk = 0. Then we have, by assumption,  ~k > 0 and hence ~.k/$ < O. 
Thus,  we can estimate 

d N 
pN I ~ V~ (p) - p~k / ~-Nwk,N (0) I < p~k / ~ i w k N (P e& ) -- Wk,N (0) I 

dpN - , 

< sup IWk,N(U)--Wk,N(O)I (p < eVt). (31) 
u<e(V+6)t 

Case 2. I-tk > 0, ~k > 0. Then we have I-tk5 + V(gk + ~,k/5) < ~tk(5 + V) < ~t~5 < 0. 
Hence, 

d H 
p S I  - ~  V~(p) l < e ~tkt max lwk,H I (p > 1). (32) 

Case 3. Ixk > 0, ...~k < 0. Again from the definit ion of  ~, we have l.tk5 
+ V(I.tk + ~,,k/5) < ~t~ 5 + (5 -- 5) (gk + ~,k / 5) = (~ / ~,k ) (I-tk~.k 1 + 5 -1 -- ~-1) < 0. Hence, 

d N 
p s i  - - ~  V~(p)I < e~tk&e v(~k+z'k/~)t maxlw~,N I (p < eVt). (33) 

Thus,  the three estimates and the root-analyticity of  Wk,N establish that 

d N 
pe[1,ev'lsup pN I ~pN V~(p ) -  1{0} (tX~)prtk+Zk/~-Hwk,N(O)l = o(e  -°~) (34) 

for some co > 0 as t---) oo In particular, the derivatives dNV[(p)/dp H are locally 
uniformly convergent,  whence the statement is immediate.  
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3.6. LEMMA 

Given  k, N there exists e > 0 such that for any ~ e (0,  e) 

d N d N 
sup I ~ ' ( P ) -  ~ ( p ) l - - - ) 0  ( t - - - )~ , ) .  (35) 

Proof  

Case 1. ~± = 0. Accord ing  to l emma  3.3, in this case we  have ~.k< 0 and 
IX k + ~.k/8 = ~k/~5(> 0). Therefore ,  

d N 
I ~p~ ~t  (p) _ p~.~/'~-Nwk N (0)] = p~,k/g-N IWk,N (Pe  gt ) -- Wk,N (0)1 

< e vl~k/g-ult ma_xIWk,N(U)--Wk,N(O)I (e -vt < p < 1). (36)  
u<e  ~ 

Since the function wk,N is root-analytic,  

IWk,N(U)- -  Wk,N(O)I < _ u °~ (0 < u < p) (37) 

for  some co > 0. Thus, i f  e -vt < p < 1, we  can est imate  

d N 
I ~ p N  ~t  (p) _ pXk/g-Nwk.N (0)1 --- exp[ (~ l  ~.k/~5 - N I+ gc0) t ] .  ( 38 )  

Here,  the fight-hand side ---) 0 for t ---) ,,o if  ~ < o~l~51/Ikk/~5- NI. 

Case 2. ~ > 0. If  e -vt < p < 1, then from (28) we infer direct ly 

d N 
I - -  ~ t  (P) I < exp[(-~k~ + ~l~tk + ~.k/~5 - N I)t] max I wk.N I. (39) 

d p  N 

Here,  the fight-hand side --) 0 for  t ~ ,,o i f  ~ < ~k I~l/l~tk + kg/~5- NI. 

3.7. 

Proof  

LEMMA 

If  Vk - 0 whenever  ~,k < 0, then 

sup Ilvt(u)ll ~ 0, length{ vt (u) • e & < u < p} ---) 0 
e~t <u< p 

It fo l lows from (27) that 

(t -~ ~ ) .  (40) 
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dN V~(U) = ~ ON V~(ue -&) = e-~'ktU~k+~k/8-Nw~N(U). (41) 
du N ~u N 

Since v~ ~ 0 implies )~k > 0, we have dNv~(u)/du N --~ 0 for any f ixed u ~ (0, p) if  
t---> ,,~. Therefore ,  it suff ices  to show that 

P 

I~u v~(u)ldu --> 0 ()~k > O, t --> ~) .  (42)  

e ~t 

Fix k with )~k > 0. Since the root-analyt ic  function wk,~ has non-zero order  i f  gk = 0, 

u g~ Iw~,l(u)l < y t u  gk+mk (0 < u < p) (43)  

for some  y~, 03 k > 0 such that gk + 0~k > 0. However ,  

P 

e-kkt I Ugk+Xk/5-1+°Jk du = ake (g~+°~)~t + bke -k~t (44)  

e & 

for sui table constants  a~, b~. Since t-tk > 0 and ~i < 0, hence (42) is immediate .  

3.8. L E M M A  

In the case 5 = -,,,, for every  ~ > 0, we have 

length{vt  (u)  • 0 < u < e (~-v)l } ---> 0 (t  ---) ~ ) .  (45)  

Proof 

As we have noted in the course o f  the p roof  of  l emma 3.7, for  any k there 
exists  Yk, ¢o~ > 0 such that 

i_~ud v~(u)ldu <_ y~u gk+°~+z'k/~-I = yku p+°~k-1 (0 _< u -< 9)  (46)  

a n d g k  + ¢0k > 0. Since -~.~ + (I.tk + o3~) ( g - ~ )  < - )~k + Ixkg < 0 by the def ini t ion 
o f  8 ,  we can est imate  for t---> ~, 

e(g-7)l 

I ~--ffu v~ (u ) ldu  < - -  

0 

Yk 

Ixk + o~ 
exp[(-)~k +(~tk + ~ k ) ( ~ - ~ ) ) t ]  ---> 0. (47)  

This  comple tes  the proof.  
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3.9 PROOF OF THEOREM 2.2 

Let  ~ : [0, 1] --> IR ~ be a p iecewise  analytic curve changing ca tchment  regions 
f initely many  times. Thus,  there is a parti t ion o f  [0, 1] into consecu t ive  pa i rwise  
dis joint  intervals I~ . . . . .  1K and there is a sequence  Yl . . . . .  Yx e S such that for  
every  i we  have "((li) c Ay~ and the restriction o f  ~" to I i extends  analyt ical ly  to 
some ne ighbourhood  o f  the c losure  o f  the interval li. Let  0 = P5 < • .  • < 9zx+ 1 = 1 
be the enumerat ion  o f  the end points  and middle  points o f  the intervals I i. Write  
U := e x p ( - D f ( x ) a  / ~x)~. Fix any index i and for u ~ [0, 1] define 

{ Et(pi +(Pi+l  - 9 i ) u )  f o r o d d  i, 

c t (u )  := ? t ( D i + l - ( 9 i + l - p i ) u )  f o r e v e n  i. 
(48)  

Observe  that ct= e x p ( - D f ( x ) a / a x ) c  and 

ct(O) E Ay,, d ( ( 0 , 1 ] )  c Ay,, (t  > 0)  (49)  

for some  y ' ,  y"  ~ S. 
Thus,  it suff ices  to see that, in arc length parameter izat ion,  c t converges  

un i formly  to some IRC joining the singularit ies y '  and y".  This  fo l lows  immedia te ly  
from the deeper  s ta tement  below.  

3.10 PROPOSITION 

Let  c : [0, 1] --+ IR n be a root-analyt ic  curve,  y ' ,  y "  ~ S sat isfying (49) with 
c t := e x p ( - D f ( x ) O / ~ x ) c .  

Then,  in the case of  y ' =  y" ,  we  have limt__,= length c t= O. 
I f  y '  ;~ y",  then there exists a sequence  y '  = Y0, Yl . . . . .  YL = Y" ~ S with 

_,,o = 80 < ql  < 81 < rh  < 82 < • • • < rlL < 8L < 0 and there are s teepest  descent  paths 
C~ . . . . .  Ct. : (0, ~ )  --+ IR n with the fo l lowing properties:  

l imt~ .~c t (e  n"t) =Ym-1 ( m =  1 . . . . .  L). For  every index m >  0, the points 
Ym-1 and Ym are jo ined by C,,, and 

(i) length ct([0, end']) --> 0 (t --+ oo), 

(ii) 
d N 

sup II ~ [c ' (P  e S ' ' ) -  Cm(P)]ll -'+ 0 (t --+ ~,  N = O, 1, m > 0), 
pc [e (rtrn -'Sin)t, 1] dp N 

(iii) 
O N 

sup I I -  [c ' (enm+:8") tqeS' t ) -C,~(e(~+:8") tq)]] l - -> 0 
p~ [e(~m-rlm+l)~, 1] dq N 

(t---) ,,% N = 0, 1, m < L), 

(iv) length c t ([e na , 1]) -+ O. (t --+ oo). 
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Proof  

It is convenient  to use the extended coordinatizations Ty (y e S) introduced 
in proposit ion 2.1. First, let us consider any ) ,e  [0, 1] such that c([y, 1 ] ) c  Ay.. 
Then ,  c([)', 1]) c Uy. and, by 2.1,  the c o m p o n e n t  func t ions  o f  the cu rve  
W : u~--~ Ty , (C(U-y ) )  satisfy Wk - 0  ( ~ "  < 0 ) .  Applying 3.7 with v =  W and 
15 = _o% we obtain 

length Ty,.(ct([y,1])) ~ 0 (t ~ oo). (50) 

Since the mapping Ty. is bianalytic, its inverse Ty~, 1 is locally Lipschitzian. Therefore, 

ct(y) ---> y", length ct([),,1]) ~ 0 (t ---> ~,,, c(T) E Ay,,). (51) 

In particular, if y '  = y " ,  then the first s tatement is contained in (51) for y =  0. 
Henceforth,  assume that y ' ~  y". Define 

Y : = { y e S : 3 0 > 0  c ( ( 0 , p ] ) c U y } .  (52) 

Note that y',  y "  ~ Y. Fix p > 0 such that c((0, p]) c C'~y~ yUy. 
We carry out the fol lowing finite recursion. Set 

5o :=  -0% Y0:= Y', 

°c(u) := c(u) (0 < u < p) ,  (53) 

Co(p)  := Yo (P > 0).  

Suppose that 8m, Ym, "C, C,,, are already constructed and fulfill 

8m<0, 

Cr,, (p)  = lim c t (pe  5'~t ) (p  > 0),  
l - - . ~  ~ 

Cm(p) ~ Ym (p ~ oo), 

Cm(p) ~ Y,n-1 (p ~ O, m > 0), 

where 
so that 

mC(O) = Cm(1), 

mc(u) = c(1/~,,)logU(u) 

(54) 

C,, is a steepest descent path and the curve mc • [0, p] ~ R"  is root-analytic 

(55) 
( O < u < p ) .  

We finish the recursion by setting L : = m if y., = y". 
In the case Ym ~: Y", we define 5m + 1, Ym + 1, m + lc, Cm + 1 to satisfy (54) and 

(55) for m + 1 in place of  ra as follows. Consider  the curve 
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v(u)  "= Ty,. (m c(u)) (0 <<_ u < 9)" (56) 

Since the mapping Ty,. is analytic, the curce v is root-analytic. Furthermore,  we have 

v(0) = ry.. (C"(1)) e Zy,. (Ay.,), v((0, D]) c Ay., Ay. n Ay,. = ~ (57) 

By setting ~.k = ~-~" (k = 1 . . . . .  n), in view of  (8) we then have 

v k ( 0 ) = 0  ( ~ k < 0 ) ,  {k:7~ k < 0 , v  krkO}¢q).  (58) 

Now we define 8" + 1 in terms of  the notation 3.2 as 8m+l : = 8 for 8 = 8,,,. 
That  is, by writing It k = "l.tk for the order of  the root-analytic component  function 
vk = (ry . )k ,  

1 

8,.+1 

Remark that 8,. < 8,. + 1 < 0. 
Having defined 8,. + 1 

1 { m~t_._.&. ~,~,, < O, (Ty,,)k ~ 0 }. 8,.  = m a x  

with a value in (0, oo), we can set formally 

C"+1 (p)  := l i m c  t (pc 8"+~t ) 
l -.-->oo 

'n+lc(u) := c(War.+l)l°g"(u) 

(p  > 0),  

( 0 < u _ < 9 ) .  

(59) 

(60) 

Observe that the meaning of the notations 3.2 for v = Ty,.("c), 5 = 8,,,, "~ = 8.,+1 and 
A t = Aty.. is the following: 

1)t (u) = l~-(1/8)l°guD(u) = At;J1/~")l°gUTy,. (ct-(llS,.)l°gu(u)) 

= Ty.. ( e x p [ - ( / -  (1/8,,,)log u)D f ( x )O  / hx]c t-O/~")l°g u (u)) 

= Ty,.(c(1/~')l°g"+[t-(WS")l°g"l(u)) = Ty,.(ct(u)) (0 < u < p) ,  (61) 

V t (p)  = v' (pe & ) = Ty,. (c t (pe  ~# )) (p ,  t > 0) 

and 

~ t ( p )  = Ty,.(ct(pe~,.+lt)) (p ,  t >  0). (62) 

Hence, 

m+lc(u) = Ty-J (V-0/a'÷Dl°g u(1)) (0 < u < 9)- (63) 

From lemma 3.3 it follows that the curve Ty,.( m + lc) admits a root-analytic extension 
to [0, p] and consequently m+lc is also a root-analytic curve on [0, 1] with the 
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extension " ÷ lc(0) : = lim, __, o" ÷ tc(u). Again, by writing V: = limt__,., ~-t, from lemma 
3.4 we see that 

{V'(p) : p > 0} c {x • lim A-ix = 0} 

c {x" 3t Atx e 7~y,. (Uy,,)} = Ty,, (Uy,,). (64) 

Thus, the curve Ty-2(V'):(0,,,o)---) IR n is well defined and 

= = T.-1 (pe~,.+~))) T~I ( ~ ' ( p ) ) T ~ I  ( ~im V" ( p ) )  y,.(Jim..Ty,,( ct 

= lim c t (pe ~'÷~` ) = fro+ 1 (p)  (p > 0). (65) 
l----) ~ 

This shows that Cm+l is also well defined on the whole (0, ,,o). Moreover, (26) 
ensures that C,,+~ is a steepest descent path issued and, by lemma 3.4, 

lim C,,,+1 (p) = T~ 1 (0) = y,,,. (66) 
p - - - ~ - ~  

We also see that 

From proposition 2.1, we know the steepest descent paths converge to points 
from S. Define 

Y,,,+I"= lim Cm+I(P). (68) 

Choose p o > 0  such that C,,,+l(po)~Uy,,+~. By the definition of  Cm+l, we 
have dist(ym + 1, ct([0, P])) ---) 0 (t --~ ,,o). Thus,  for some "~ > 0, c t (p0 e~"+~t) 
= T~ 1 (V'  (P0)) e Uy,.+~ (t > "1:), that is, 

C(1/~rn+l)l°g(u/P°)(U) E ~rym÷ 1 (0  < U < poe~'+~x). (69) 

Hence, from the definition of Y we can see directly that y,,, + 1 ~ Y. This completes 
the proof of (54) and (55) with m + 1 in place of  m. 

Since the function f decreases strictly along non-constant steepest descent 
paths, 

f ( Y o )  < f ( Y l )  < • • • < f(Ym+l).  (70) 

Since the family Y is finite, this means that the recursion stops in finitely many 
steps. 
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We define the logarithmic speeds ri1 . . . . .  rit. in the following manner. Lemma 
3.6 applied with 15 = 15,, to the curve v defined in (56) ensures in view o f  (35) that 
for any m < L we may choose v--m+1 e (0,15"+1-15") such that 

d N 
sup ,  II [Ty,,(ct(pe~"+:))-Ty,,(C'+I(P))]II "-> 0 

pc(e- ,n+l ,11 0--7" 
(71) 

for t---> oo and N = 0, 1. Choose v--m+1 in this way and define 

rim+l: = 5"+1 - v ' + l  (m = 0 . . . . .  L - l ) .  (72) 

Observe that since the steepest descent path Cm + 1 starts from Ym and ends in 
Ym+ 1, the curve 

C ' : =  { C ' ( p )  • p >_ 1} u {y ' }  L2 {C'+l (p)  • p <- 1} (73) 

is a compact subset of  the domain Uy,. Therefore, for any 0 <_ m < L, there exists 
a precompact neighbourhood Gm c Uy,, of  Cm such that all the derivatives of  the 
mapping Ty,, are bounded on Gm and all the derivatives of  Ty- 2 are bounded on 
Hm := Ty,,(Gm). Note that Hm is also a precompact neighbourhood of  Ty,,(c~'). 

On the basis of  the previous observation and lemmas 3.5-3.8,  the statements 
3.10 ( i ) - ( i v )  can easily be verified. 

Proof  of(i): For v = Tyo(C), 15 = _0% we have g = 151 and u '  = Ty0(c') with the 
notations 3.2 by the previous considerations. Apply lemma 3.8 with V = 151-ill. 
Hence, we find that 

length Tyo(ct([O, eq~t])) ---> 0 (t ----> oo). (74) 

Thus, for sufficiently large t, we have Tyo(Ct([0, en't])) c H0 and hence (i) is immediate 
by the boundedness of  the derivatives of 6T~.1.~ I H0. 

Proof of  (ii), (iii): For v = Ty,,(mc), 6", we have ~ = 6"+1 and 

Vt (p)  = Ty,. (c' (pe )), 

V ( p )  = ry,. ( C ' ( p ) ) ,  

V" (p)  = Ty,. (c' (pe  ~"+: )), 

V (p) = ry m (Cm+ 1 ( p ) )  

(75) 

with the notations 3.2. By setting v : = r i , , + 1 - 6 "  and V : = 6 m + l - r i m + l ,  by the 
definition of  rim +1 we obtain 

d N 
pe t~(~su~=+~) ',1111 ~ [Ty,. (c t (pe 8m+: )) - Ty,,, (Cm+l (P))] II 

d N 
= su_p II [Wt(p)-V(p)]ll----> 0 

pe [e -v'n+v,1] 7 
(t---)oo, N = 0 , 1 ) .  (76) 
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Notice that for N = 0, 1 we have 

d N 
"dp N [Ty,. (c t (e(rl,.+:~,.)tqe 8,.t )) - Ty,. (Cm+l (e (rl'"+:8'')tq))] 

d ° d ° ............ [V t (e  vtq) - V(e  vtq) = ( v t )N[p  N ~ (Vt(p)  - V(p))]p=eV,q (77) 
dp N dp N " 

Hence, lemma 3.5 entails 

d N 
sup It ~ [Ty,, (c t (e (~"÷1 -~" )tqeS"t )) 

qe[1,e (rlm+l-6rn)t] dp  N 

- Ty,, (Cm+l(e(n"+a-8")tq))]l I --> oo (t ---> oo). (78) 

Thus, for sufficiently large t, 

Hrn c Ty,. (c t ({pe 8'.+~' • e (n,.-~,.÷x)/ < p < 1} 

k.3 {e (rl,n+x-8,,,)tq+~,,,t" 1 < q _< e (nm+~-~m)t }) 

= Tr," (c t ([e n,.' , e ~ + :  ])). (79) 

Now the boundedness of  the derivatives of  T~ollHo establishes (ii), (iii). 
Proo f  o f  (iv): For 19 = TyL(c ), 5 = 5L, we have v t =  TyL(c t) with the notations 

3.2. In this case, v t (0 )=  L-~c(0)=  Ct.(1) ~ AyL= A : .  However, ct(u) ~ Ay. for every 
t and u. Therefore, u([0, 19]) c @L, whence vk --- 0 (~YL < 0). Thus, applying lemma 
3.7 we see that 

TyL(Ct([e~Lt,p])) ---> O, length c t ([e~J ,p])  ---> 0 (t ----> oo). (80) 

The boundedness of  the derivatives of T>~ 11Ho provides the result immediately. 
The relations ct(e n,.t) ----> Ym - 1 (m = 1 . . . . .  L) follow directly from (iii) with 

the substitution p = e (n,.- ~,,)t. 
The proof of  proposition 3.10 is now complete. 
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